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Tidally heated convection in Enceladus’ ice shell:
Implications for the South Pole thermal activity
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Abstract

Observations by Cassini have revealed that Ence-
ladus’ south pole is highly active, with jets of icy
particles and water vapor emanating from narrow
tectonic ridges, called the tiger stripes [1]. This jet
activity is associated to a very high thermal emission
mainly focused along the tectonic ridges [2]. Heat
power required to sustain such an activity is probably
related to the dissipation of mechanical energy due
to tidal forces exerted by Saturn. However, the
magnitude of the observed heat power as well as the
concentration of activity in the south polar region
remain problematic. Models of tidal friction in the
ice shell indicates that a liquid water layer must exist
between the rocky core and the ice shell in order to
generate sufficient tidal flexing [e.g. 3,4]. However,
the long term stability of this liquid reservoir as well
as the mechanism concentrating the heat release along
narrow ridges at the south pole remain problematic.

A variety of models have been developed these last
years to better understand the coupling between heat
generation and transport on Enceladus. Three main
mechanisms of heat production are proposed: shear
heating on tidally-displaced faults [3], volumetrically-
distributed viscous deformation in a convective ice
shell [4,5], turbulent dissipation associated with
strong tidal oceanic flow [6]. For the heat transport,
four mechanisms are considered: conduction through
the ice, solid-state convection [e.g. 5,7], circulation
of water vapor [e.g. 3,8] and flow of liquid water [9].
Shear heating and vapor transport along faults, which
are by nature very local processes, seem a priori more
compatible with the south polar activity, which is
strongly localized along the tiger stripes. However,
generating large tidal motions along the faults remains
physically difficult and heat transport by vapor can be
efficient only in very porous media. An alternative

solution may be dissipation in a broader region within
a convective ice shell. The main problem with this
model is to explain the concentration of heat release
in a very narrow region. Recent advances in the
modeling of thermal convection and tidal dissipation
in a 3D geometry [5,10, 11] permits us now to test this
hypothesis in more details.

After reviewing the different mechanisms proposed
for the heat production and transport on Enceladus,
I will present recent results on the 3D modeling of
tidally-heated convection in Enceladus’ ice shell and
will discuss the implications of coupled thermal con-
vection and tidal dissipation for the present-day activ-
ity of Enceladus.
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