
Supporting Information for

GRAIL gravity constraints on the vertical and
lateral density structure of the lunar crust

Jonathan Besserer ∗, Francis Nimmo, Mark A. Wieczorek, Renee C. Weber,
Walter S. Kiefer, Patrick J. McGovern, Jeffrey C. Andrews-Hanna,

David E. Smith, and Maria T. Zuber

Geophysical Research Letters

∗ To whom correspondence should be addressed; E-mail: jbessere@ucsc.edu

This document contains:
• Supporting Information text

• Tables S1 to S3

• Figures S1 to S11

• Supplementary references

Contents
S1 Modeling approach 2

S2 Simple density depth-dependencies 4

S3 Effect of crustal thickness variations 7

S4 Data windowing procedure – Multitaper approach 8

S5 Error analysis and statistical significance 13

S6 Robustness to models and fitting parameters and sensitivity 19

S7 Theoretical vs. observed seismic velocities 26

Supplementary references 29

1



S1 Modeling approach

Consider a vertically layered crust, with a surface topography h(x) and a density
distribution ρ(z), with x an arbitrary horizontal coordinate and z the depth below
the surface (see Fig. S1).

Figure S1: Definition sketch for the theoretical admittance calculations. The crust
is decomposed into a series of (thin) constant density layers. Each one is charac-
terized by a density contrast dρ = ∂ρ

∂z
dz with the overlying (upper) layer, whereas

the first layer’s density contrast corresponds to its own density. Here, only the first
three layer interfaces are schematically pictured, for a given wavelength 2π/k. dz
is the infinitesimal distance between consecutive layers and h0 is the topographic
amplitude.

We will use a Cartesian geometry for simplicity, and will later argue that this
induces a negligible error in comparison to a more rigorous approach in spherical
geometry. The resulting free-air gravity anomaly measured at z = 0 is given
by the “mass-sheet” approximation [e.g., Turcotte and Schubert, 2002] and by
summing the contributions of each layer of topography h(x) = h0 sin(kx) for a
given wavenumber k:

∆g(x) = 2πGh0

[
ρsurf +

∫ +∞

0+

∂ρ

∂z
e−kz dz

]
sin(kx), (S1)
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where ρsurf = ρ(0) is the surface density. The exponential term is an attenuation
factor and comes from the fact that the gravitational potential associated with each
layer’s mass anomaly at depth must satisfy Laplace’s equation. Note that each
layer is assumed to have the same amplitude (h0).

The free-air admittance Z is given by the ratio of the Fourier components (here
sans-serif characters) of the gravity anomaly and topography [e.g., Audet, 2014,
and references in it]:

Z(k) =
∆g(k)

h(k)
. (S2)

If ρ is independent of depth, then Z(k) = 2πGρ. By analogy, when density
varies with depth, we can define the effective density spectrum:

ρeff(k) =
Z(k)

2πG
. (S3)

Combined with Eq. (S1), this yields

ρeff(k) = ρsurf +

∫ +∞

0+

∂ρ

∂z
e−kz dz. (S4)

Finally, by converting the wavenumber to its spherical harmonic equivalent,

k(`) =

√
`(`+ 1)

R
, (S5)

where ` is spherical harmonic degree and R is the radius of the reference surface,
the effective density is given by:

ρeff(`) = ρsurf +

∫ +∞

0+

∂ρ

∂z
e−
√
`(`+1)

R
z dz. (S6)

In practice, the integral can be performed over a restricted depth range (e.g.,
crustal thickness, zc). Though the density anomalies (e.g., porosity) could extend
down to the upper mantle, we will consider only high degrees, i.e. shallow sam-
pled depths in this study, as discussed below. We do not consider lower degrees
in this study, because of the influence of complicating effects such a flexure. The
effect of the crust-mantle discontinuity itself will be discussed in Sec. S3.
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Note that we are here neglecting finite-amplitude topography effects. The
justification for doing so is that these effects are automatically accounted for in an
approximate way by the way in which the observed effective density is obtained
(Sec. S4). We also verified our approach by carrying out tests using synthetic
gravity data and comparing the synthetic effective density spectra obtained with
our analytical spectra (see below).

The assumed in-phase nature of the density layers (see above) is reasonable
for situations in which the main source of near-surface topography is impacts, or
where gravitational and/or thermal compaction of the pore space has occurred,
though it might be questionable for lava-filled regions (e.g., mare). However, the
simple linear model below, derived from Eq. (S4), is able to detect mare regions,
so this assumption does not prevent simple mare detection. The in-phase assump-
tion at short wavelengths is also strongly supported by the near-perfect (i.e. close
to +1) correlation between the observed gravity and the gravity predicted from
topography (i.e. Bouguer correction).

S2 Simple density depth-dependencies

Eq. (S4) or (S6) can be combined in general with a given expression for the depth-
dependence ρ(z), and a simple expression of the effective density at high degrees
(i.e. short wavelengths) is obtained by considering the crustal thickness zc to be
large compared with the other lengthscales of interest. The case of low crustal
thickness, where the crust-mantle interface’s signal should be taken into account,
will be detailed in Sec. S3.

In the case of a linear density increase with depth [ρ(z) = ρsurf + az], the
theoretical effective density spectrum is given by:

ρeff, lin(k) = ρsurf +
a

k
, (S7)

where a is the density gradient. If the density is limited by a maximum value ρmax,
a saturation term will appear in Eq. (S7) from the modified density profile

ρ(z) =

{
ρsurf + az if z ≤ zcrit

ρmax if z ≥ zcrit
, (S8)

with zcrit = (ρmax−ρsurf)/a the critical depth below which the density is constant:
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ρsat
eff, lin(k) = ρsurf +

a

k

(
1− e−kzcrit

)
. (S9)

Because of the saturation term, this case may be more appropriate, for instance,
if one considers the density increase to be due to porosity closure alone. Eq. (S7)
or (S9) can be fit to the observed effective density signal to estimate the spatial
variation of the density gradient a and the surface density ρsurf (e.g., Fig. 1).

More realistic density profiles are given by an asymptotic exponential increase
of the density [Athy, 1930; Carrier III et al., 1991; Han et al., 2014] toward a
maximal, deep value ρ0 = ρsurf + ∆ρ, in which case ρ(z) = ρ0−∆ρ e−z/d, where
d is an e-folding depth scale. The corresponding effective density spectrum is:

ρeff, exp(k) = ρsurf +
∆ρ

1 + kd
. (S10)

Note that if ρ0 is the grain (i.e. intact rock) density ρg and if one considers density
variations to be due to porosity closure only, then d is the e-folding depth scale
of the porosity profile φ(z) = 1 − ρ(z)/ρg. If d is large or k is large, then the
effective density is close to the surface value, while if d is small or k is small, then
the effective density is that at depth, ρ0.

We note that the spatial distributions of the characteristic depth scale obtained
by fitting the observations to a model are very similar irrespective of whether the
model adopted is described by Eq. (S9) (i.e. depth scale is zcrit) or Eq. (S10)
(depth scale is d). Similar distributions also arise through a simple model with
two constant-density layers when one maps the thickness of the top (low-density)
layer, fixing the bottom (“infinite”) layer at the density ρg (see Sec. S6).

The theoretical effective density spectra derived in this section, for various
density profiles ρ(z), have been verified against numerically derived synthetic
spectra. The latter were calculated using the same approach as for real data as
described in Sec. S4. The synthetic gravity spherical harmonic coeffcients were
calculated with the finite-amplitude method of Wieczorek and Phillips [1998], us-
ing power series of topography up to order 20 and for a crustal density profile
ρ(z) as specified by an analytical expression. Though the exact approach will be
explained in Sec. S4, it is worth noting that, as compared to Eqs. (S2)-(S3), the
idea is here to compute the synthetic effective density as follows:

ρeff(k) =
∆g(k)

∆ĝ(k)
, (S11)
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where the numerator is the computed gravity for a given density profile ρ(z), and
the denominator is the gravity predicted from surface topography (i.e. Bouguer
correction) per unit density. When the topography amplitude is small, we simply
have ∆ĝ(k) = 2πG h(k), and Eqs. (S2)-(S3) are retrieved. In practice, Eq. (S11),
valid in Cartesian geometry, is realized through Eq. (1) of the main text (spherical
geometry), which also appears below as Eq. (S18).

Figure S2A shows the excellent agreement between the analytical spectra and
the synthetic ones by mean of examples with exponential density profiles. Errors
in our standard, high-degree range (250 ≤ ` ≤ 550) are typically less than 0.1 %
(see Fig. S2B). Similar agreement is obtained for the other types of density profiles
considered above. This justifies a posteriori the use of Cartesian geometry and the
neglect of the finite-amplitude correction in our analytical treatment, as long as
the real effective density spectrum that will be fit with various analytical spectra
is calculated by taking finite-amplitude effects into account (see Sec. S4).

Figure S2: Comparison between analytical and synthetic effective density spectra.
Three cases are displayed (A) for an exponential porosity profile: two cases with
shallow main density variations (d = 0.5 km, d = 8 km; ρ0 = 2923 kg m−3, ∆ρ =
0.20ρ0), and a case with a quasi-constant density (d = 8000 km, ∆ρ = 0.12ρ0).
The match is very good in the wavelength range of this study (250 ≤ ` ≤ 550) and
significant differences only appear at low degrees. Relative errors are displayed
in panel B; note that the sharp slope transitions in the signal (e.g., at ` ∼ 500 for
d = 0.5 km) correspond to a change of sign for the error.

Although equations for ρeff corresponding to Eqs. (S7), (S9), and (S10) can
be derived directly in spherical geometry [e.g., Han et al., 2014], the Cartesian
approximation remains sufficient in our short-wavelength range.
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S3 Effect of crustal thickness variations

The density constrast at the lunar crust-mantle boundary might contribute to the
slope of the observed effective density spectra observed. Similarly, sharp tran-
sitions of porosity at depth (e.g., viscous compaction-induced porosity interface)
could also affect that slope. This is especially true in regions with low crustal
thickness, as in the South Pole-Aitken impact basin area. To investigate the ef-
fect of such density contrasts, we shall use an admittance approach in the same
spirit as previously used for the shallow crustal density contribution. Consider
two sinusoidal interfaces – here the lunar surface and the crust-mantle interface –
separated by a mean distance zu, and with a phase offset Φ. The density constrast
at the upper and lower interfaces are ρu and ∆ρl, respectively, the topographic
amplitudes are h0 and h1. Neglecting sphericity, as our study focuses on short
wavelength, and finite-amplitude corrections, the free-air gravity anomalies due
to the upper and lower interfaces are respectively

∆gu = 2πGρuh0 cos(kx) (S12)

and

∆gl = 2πG∆ρlh1e
−ktu cos(kx+ Φ), (S13)

where G is the gravitational constant, x is a horizontal coordinate, and k is the
wavenumber.

The ratio of the net surface gravity ∆g = ∆gu+∆gl to the surface topography
h, referred to as the admittance Z, can be simply calculated from the formula [e.g.,
Forsyth, 1985; Audet, 2014]

Z(k) =
h(k)∆g(k)

h2(k)
, (S14)

where the right-hand side functions of k are the Fourier components (here sans-
serif characters) of the corresponding spatial functions, and overlines represent
the average over some range of wavenumbers.
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Then, assuming that h0 and h1 are statistically independent of Φ and of each
other, and that Φ is independent of k [e.g., Audet, 2014], Eq. (S14) reduces to the
simple formula

Z = 2πGρu(1 + fu cos Φ), (S15)

with
fu =

h1

h0

∆ρl
ρu

e−kzu . (S16)

If the two interfaces are in phase (cos Φ = 1) then the gravity contributions
add, while if they are in anti-phase, they subtract. The quantity fu compares the
contribution of the lower interface to that of the upper interface: upward attenua-
tion reduces the contribution of the lower interface.

At short wavelengths, the surface topography (which is caused mainly by im-
pacts) is not expected to be correlated with topography on the crust-mantle in-
terface. Furthermore, the topography of this interface may be modified by lower
crustal viscous flow (relaxation), which is more rapid at short wavelengths. The
distribution of Φ can therefore be reasonably be assumed to be random. If the
relief along the crust-mantle interface is uncorrelated with surface topography,
the resulting ensemble average of Eq. (S15) over Φ yields the same answer as
Eq. (S3). The effective density will therefore be unbiased by the topography on
the crust-mantle interface.

This argument is further supported by the lack of spatial correlation between
the SP-A lower-d feature (Fig. 2) and the crustal thickness variations inside SP-A
(see crustal thickness models of Wieczorek et al. [2013a]). Furthermore, in the
non-SP-A farside, our model best-fit solution displayed in Fig. 2 exhibits low-d
features in regions of higher crustal thickness and, conversely, high-d features in
low-crustal thickness regions (e.g., at ∼ 0◦N, 90◦E or at ∼ 20◦N, 180◦E). We
therefore conclude that variations in crustal thickness are unlikely to be affecting
our results.

S4 Data windowing procedure – Multitaper approach
In this study, we use localized estimates of the spherical harmonic coefficients of
the lunar gravity and topography fields in order to retrieve the crustal effective
density spectrum. For this purpose, a multitaper windowing procedure was ap-
plied (see below). The original, global spherical harmonic coefficients for each
field come from the data files listed in Tab. S1.
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Table S1: GRAIL and LOLA data used in this study (spherical harmonic coef-
ficients). The spatial fields were reconstructed up to spherical harmonic degree
` = 660. Note that the data fits (see Sec. S5) were performed over a short-
wavelength range (250 ≤ ` ≤ 550). The Bouguer correction (b) was calculated
in the same way as in the study of Wieczorek et al. [2013a], i.e. using the finite-
amplitude method of Wieczorek and Phillips [1998]. In practice, only g and b are
explicitly needed in our approach; see Eq. (S18) and (S20).

Data type File Comment

Free-air gravity (g) GRGM900B SHA.TAB NASA GSFC model
Topography LRO LTM01 PA 1080 SHA.TAB Principal axis referenced

The observed effective density was calculated from the spherical harmonic
coefficients of the free-air (GRAIL) gravity, and of the gravity predicted from
(LOLA) topography (Bouguer correction), evaluated assuming a unit surface den-
sity and taking the finite-amplitude correction into account. The procedure is
summarized below.

The high-degree gravity contribution of the topography being a non-linear
function of the topography, it can be written, in terms of spherical harmonic coef-
ficients f`m of a function f :

g`m = ρeff(`) b`m + ν`m, (S17)

where g and b refer to the observed free-air gravity and to the gravity predicted
from surface topography (Bouguer correction) assuming unit density and applying
the finite-amplitude correction [Wieczorek et al., 2013a], respectively, and ν is the
component of the observed signal that is not due to the surface topography. The
term ρeff(`) is an effective density that is sampled at a degree `. Assuming ν to be a
random variable uncorrelated with b, then, by multiplying both sides of Eq. (S17)
by b`m, summing over all angular orders m, and taking the expectation, we get an
unbiased estimate of the crustal effective density at each degree:

ρeff(`) =
Sgb(`)

Sbb(`)
, (S18)

with Sfg the cross-power spectrum of two functions f and g on the sphere:
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Sfg(`) =
∑̀
m=−`

f`m g`m. (S19)

Another quantity of interest, that contains complementary information (see
Sec. S5), is the correlation between g and b:

γ(`) =
Sgb(`)√

Sgg(`)Sbb(`)
. (S20)

In order to map lateral variation in the crustal shallow density structure, we
apply a windowing of the gravity and topography data. Localized estimates of the
admittance and correlation spectra were obtained using the SHTOOLS package
[Wieczorek, 2012]. The local analysis was performed in a series of regions of in-
terest (ROIs) centered on each node of a quasi-equal-area distribution. A similar
kind of distribution of ROIs was originally used in the study of Wieczorek et al.
[2013a]. Here, we employ a coarser (though sufficient, see Sec. S5) distribution of
400 nodes, corresponding to an angular separation of 9.5±0.9◦ (i.e. spatial resolu-
tion of ∼290 km). For each ROI, we calculated localized spectral estimates of the
gravity and topography using the multitaper spectral analysis approach developed
by Wieczorek and Simons [2005, 2007]. The localization windows are constructed
to have their energy optimally concentrated in the region of interest for a specified
spectral bandwidth of the windows. The optimization problem yields a family of
orthogonal windows (spherical Slepian functions), or tapers, each with a specified
concentration factor λ. In our analysis, the radius of the spherical cap is fixed at
θ0 = 15◦ and the spectral bandwidth of the tapers is set to L = 58. With this
bandwidth, there are n = 30 tapers whose concentration factors are such that
λ ≥ 0.99.

For each of these n tapers, the gravity and topography-predicted gravity fields
are multiplied by the corresponding subwindow in the spatial domain. The result-
ing windowed fields are then decomposed into spherical harmonics, from which
the admittance and correlation are estimated. Each individual tapered spectral es-
timate is then combined into a simple arithmetic average at each degree `. Thus,
for each ROI, an averaged spectrum for the effective density ρeff(`) and the cor-
relation γ(`) is obtained, together with their associated standard deviations. The
latter reflects the variability of the spectral estimates obtained with the various
tapers associated with the ROI’s window. It is therefore a way of characterizing
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spatial variability inside each window, because the various tapers correspond to
various spatial coverages over the window 1. An alternative, and in principle more
appropriate approach would be to compute the cross-power spectra, in Eq. (S18),
associated with each individual taper, and then use the average of these cross-
power spectra to calculate the effective density. In our high-degree range, given
that we use a large number of tapers (see below), both approaches give very simi-
lar results. For example, over ` = 250−550, the difference between the two kinds
of effective density spectra for the regions depicted in Fig. 3 are less than 0.14 %
(Fig. 3A) and less than 0.18 % (Fig. 3B).

We also employed a broad multitaper window (θ0 = 82.5◦, L = 11, n =
38; Shannon number of ∼62.6) centered at 180◦E,0◦N to estimate the average
characteristics of the farside; Fig. S3 shows the window’s location over the lunar
topography, the associated effective density spectrum, and the corresponding fit
parameter space.

The high resolution gravity data obtained from the GRAIL mission are par-
ticularly well-suited for performing multitaper analyses: the spectral smoothing
associated with our bandwidth L allows for an interpretation of a significant range
of spherical harmonic degrees. In particular, as we use gravity and topography
fields up to degree ` = 660, the localized fields are reliable between degrees L and
660 − L [Simons et al., 1997; Wieczorek and Simons, 2005, 2007]: for L = 58,
we fit effective densities in the degree range ` = 250− 550.

In some cases, comparison of theoretical effective admittance spectra (which
effectively correspond to a window that evenly weights data everywhere on the
sphere) with observed spectra (derived using a finite window) can produce mis-
leading results [e.g., Pérez-Gussinyé et al., 2004]. We checked that this issue
was not a problem for our results by generating a synthetic gravity field using a
theoretical effective density profile as decribed below.

In order to obtain this synthetic gravity field, consider Eq. (S18) and our theo-
retical expressions for the effective density spectrum for a given depth-dependence
of the density, ρth

eff (see Sec. S2). We have:

Sǧb(`) = ρth
eff(`) Sbb(`), (S21)

where ǧ represents the synthetic gravity and b refers to the Bouguer correction for
a unit density. The synthetic gravity coefficients therefore may simply be written

1See, e.g., Fig. 5.4 of Simons et al. [2006] for the spatial patterns associated with the various
tapers.
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Figure S3: Average farside characteristics. (A) Broad ROI employed to extract
farside average characteristics (θ0 = 82.5◦, L = 11, n = 38), draped over shaded
relief LOLA topography. Associated effective density spectrum and best-fit esti-
mate for the exponential model (d = 9.0+2.2

−1.8 km, ρsurf = 2223+44
−54 kg m−3) and

correlation spectrum (B), and associated misfit map (C); format as in Figs. 1-3.
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ǧ`m = ρth
eff(`) b`m. (S22)

This synthetic gravity field can then be localized (together with the Bouguer
correction) in the same way as we do for the observed gravity field and the result-
ing effective density should ideally be identical to the input density model ρth

eff .
In the high-degree range considered for data fitting in this study (` = 250 −

550), the difference is very small (typically lower than 0.3 %). This is explained
by the fact that, given that the amplitudes of the cross-power spectra are slowly
varying at high degrees, the windowed power spectral estimates are not signifi-
cantly biased from their global equivalents. Our results are thus not affected by
the use of non-localized theoretical density spectra, i.e. the simple analytical ex-
pressions derived in section S2.

S5 Error analysis and statistical significance

To estimate the best fit parameters, we employ a simple chi-square (χ2) mini-
mization approach. Using a grid search-based parameter space exploration, every
observed, windowed (multitapered) effective density spectrum ρobs

eff is compared
to a theoretical prediction ρth

eff (see Sec. S2) to calculate the chi-squared misfit:

χ2 =
`max∑
`=`min

[
ρobs

eff (`)− ρth
eff(`)

σ(`)

]2

. (S23)

Here, σ(`) is the standard deviation at each degree ` of the observed effective den-
sity spectrum obtained from the multitaper windowing of the data (see Sec. S4).
The short-wavelength range considered in this study corresponds to data from de-
gree `min = 250 to `max = 550. In particular, this avoids the effects of flexure
and/or crustal thickness variations at lower degrees, and ensures the correlation
between the free-air gravity (g) and topography (or, equivalently, the Bouguer
correction, b) is close to unity [e.g., Han, 2013, see also Fig. S3B], which is a
requirement of our model. The Bouguer anomaly (g − b) spectrum shows a loss
of fidelity for increasing degrees beyond ` > 550, as in the studies of Han [2013],
Han et al. [2014], and Konopliv et al. [2014]. However, the exact values of `min

and `max are not critical to our results, as will be shown below (Fig. S9). We note
also that a more rigorous approach would be to define χ2 in Eq. (S23) with a sum
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over a subset of the range {`min .. `max}, in order to take into account the fact that
only estimates at degrees separated by 2L are statistically independent, L being
the tapers’ spectral bandwidth (see Sec. S4). However, we will show in Sec. S6
that this alternative approach does not affect our main conclusions.

For each individual analysis region window, uncertainties in estimated param-
eters are likely mostly due to the combination of regions with different geological
characteristics (e.g., maria vs. non-maria) into the same analysis region. The error
due to the gravity coefficients, estimated from a series of clones of the GSFC (see
Tab. S1) gravity field [Mazarico, pers. comm.], are much smaller and represent a
minor contribution. The main source of error on our estimated best-fit parameter
is therefore of geological (hence a priori unknown) origin.

The magnitude of the signal that is not explained by our model (here referred
to as geologic “noise”) can be estimated from the correlation γ between gravity
(g) and topography (i.e., here, Bouguer correction per unit density, b) [Eq. (S20)].
Assuming that the gravity signal contains some random signal ν that is not pre-
dicted by the model admittance and that is uncorrelated with b, it can be shown
that the observed correlation γobs is given by

γobs(`) =
γth(`)√
1 + Sνν(`)

Sǧǧ(`)

, (S24)

where γth is the correlation that would be observed for the synthetic gravity ǧ
predicted from a given model density profile [Eq. (S22)]. The second term under
the square root in Eq. (S24) can be viewed as the inverse of a signal-to-noise ratio2:
the absence of noise would make γobs equal to γth. Therefore, using Eq. (S17),
the noise power spectrum can be estimated from the ratio of the coherences γ2:

Sνν(`) = ρth
eff(`)2 Sbb(`)

{[
γth(`)

γobs(`)

]2

− 1

}
. (S25)

Because of the implied in-phase nature of the density layers in our model (see
Sec. S1), γth is unity, and the variance of the noise at each degree can be estimated
from

σ2
ν(`) =

Sνν(`)

2`+ 1
. (S26)

2Note that Sgg(`) = Sǧǧ(`) + Sνν(`).
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To determine an appropriate confidence interval on χ2, and therefore error bars
on our best-fit parameters, we performed Monte Carlo simulations as follows. At
a given location, the best-fit effective density spectrum ρeff(`) was used to gener-
ate a series of synthetic gravity fields by means of Eq. (S17): at each degree `, the
noise coefficients ν`m are distributed in a Gaussian random fashion of standard
deviation σν(`). The latter is computed from Eqs. (S25)-(S26), using the local-
ized, observed correlation (γobs). The localized effective density and correlation
spectra of the resulting synthetics are then computed (see Sec. S4). Each realiza-
tion is characterized by its χ2 value [eq. (S23)] which quantifies the misfit to the
input (best-fit theoretical) model.

Fig. S4 shows the synthetics obtained from a set of 1000 random realizations,
the associated probability density function of χ2, and the inferred admissible pa-
rameters range. Our usual, 15-degree radius localization window (see Sec. S4)
was here centered on the farside. Panel A shows that the synthetics reasonably
reproduce the characteristics of the observed spectrum. The associated 1-σ con-
fidence interval is determined from the cumulative distribution function of χ2. In
this case we find that χ2 < 1.23χ2

best encompasses 68.27 % of the values, where
χ2

best denotes the minimum misfit obtained by fitting the actual observed spec-
trum. For another, different example region, corresponding to panel B of Fig. 3
we found the normalized bound on χ2 was∼1.45. On this basis, we take a conser-
vative, single bound of the acceptable χ2 value of 1.5 times the local minimal (i.e.
best-fit) value, assuming (rough) stationarity, and keeping in mind that the main
assumption is that of random noise uncorrelated with topography. The fact that
χ2

best (observed) is close to the expected value derived from the synthetics (see
Fig. S4B) suggests that our approach is a reasonable approximate way to derive
uncertainties on the local effective density (see also Sec. S6).

The region of acceptable models in the parameter space (e.g., Fig. S4C) en-
ables us to define appproximations of the uncertainties on each parameters, as
illustrated in Fig. S5.

Fig. S6 displays the minimum misfit (chi-square, χ2
best) and the corresponding

relative uncertainties on the parameters for the exponential model (i.e. Fig. 2).
The displayed uncertainties on a parameter • are simply σ• = σ−• +σ+

•
2

.
In order to quantify the statistical difference between the SP-A region and the

rest of the farside (see Fig. 2), a Monte Carlo analysis was performed as follows.
Two broad regions of 30◦ radius (see Fig. 2) that each contain 26 window centers
were considered. For each Monte Carlo realization we randomly assigned values
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Figure S4: Example of a population of synthetic density spectra obtained from a
set of 1000 random Monte Carlo realizations of a synthetic gravity field. The per-
turbation (noise) is estimated from the observed correlation (see text). The density
model profile is exponential [Eq. (S10), with here ρ0 = ρg = 2892 kg m−3]. (A)
Effective density (bottom curves) and corresponding correlation (top curves) spec-
tra. The 3 first synthetics are shown (green curves), as well as the entire population
(yellow curves). The observed data are displayed in black. The best-fit to the ob-
served effective density over ` = 250−550 is shown as the red curve. The regular,
15-degree radius localization window was here centered on the farside. (B) Prob-
ability density function (PDF, histogram) and associated cumulative distribution
function (CDF, blue curve) of χ2 of the population population with respect to the
best-fit model. The median and expectation are indicated for reference. The hor-
izontal axis shows χ2 values normalized to the χ2 obtained for the best-fit model
to the observed data (χ2

best ≈ 52.17). The 1-σ confidence interval is determined
from the CDF, and is χ2

max ≈ 1.23χ2
best. (C) Associated misfit map (same for-

mat as in Figs. 3 & S3: dot locates best fit, lines depict admissible parameters
range). (D) Distribution of the synthetics in the parameter space: each synthetics’
pair of best-fit parameters is located by a dot. The red dots correspond to the 683
closest to the observation’s best fit (thin lines), depicting an alternative admissible
parameters range (thick lines) in good agreement with that shown in panel C.
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Figure S5: Definition of the error bars on the best-fit parameters. For each win-
dow’s effective density profile, a grid search is performed over a range of value for
the density increase depth scale d and density contrast ∆ρ (see text). A best-fit so-
lution is found (dot), together with a range of admissible solutions (crescent-shape
region) such that the associated misfit χ2 is lower than 1.5χ2

best (see text). Because
of the skewness of the admissible region, we define asymmetric uncertainties σ+

•
and σ−• from the endmember solutions (dotted lines). Conservative Monte Carlo
simulations of Fig. S7 below (p. 18) were peformed using half Gaussian random
deviates from the best-fit values with corresponding standard deviations σ±• .

Figure S6: Spatial variability of the fit quality for the exponential model density
profile and associated estimated uncertainties on best-fit parameters. (A) Mini-
mum misfit (chi-square, χ2

best) and associated relative uncertainties σ•/• on the
(B) density increase depth scale (d; parameter mapped in Fig. 2) and (C) density
contrast (∆ρ). For each individual window acceptable models (hence uncertain-
ties) are considered to be such that χ2 ≤ 1.5χ2

best (see text). Similar format as
Fig. 2.
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of d and ∆ρ to each window based on the associated σ+
• and σ−• and assuming

asymmetric Gaussian distributions (see Fig. S5). Fig. S7 displays the outcome
of such Monte Carlo simulations for the exponential model density profile (i.e.
Fig. 2).The results shown are the mean values < d > and < ∆ρ > taken over the
26 windows, computed from a set of 106 realizations of each population. The final
outcome are Gaussian-like, slightly asymmetric distributions. The width at half
maximum for each of these distributions gives an estimate of the statistical uncer-
tainties over d and ∆ρ. The SP-A region and the typical non-SP-A farside appear
to be significantly different with respect to the depth scale d (or, equivalently, with
respect to the low-density layer’s thickness; see Fig. S7): d = 8.1± 1.0 km for
SP-A, and d = 15.0± 1.5 km for the non-SP-A farside. Note, however, that
these are only approximate estimates as the uncertainties σ±• are underestimated
in some places (as in Fig. 3B, where the upper bound of ∆ρ is not constrained
through our approach).

Figure S7: Statistical difference between the low density (porous) layers of SP-
A and the rest of farside. Distribution of average values for the density increase
depth scale d (A) and density contrast ∆ρ (B) for the model with an exponential
density profile, from Monte Carlo simulations. For each of the two regions, the
probability density function (PDF) of the mean value< > of each parameter over
26 windows is computed from sets of 106 random draws, which were performed
using a Gaussian perturbation of standard deviation σ±d or σ±∆ρ around the best fit
value – see text for detail. Histograms’ bin widths correspond to our parameters
grid-search steps (see caption of Tab. S2, p. 23). A robust difference does exist
between SP-A and the rest of the farside in terms of the density increase depth
scale.
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S6 Robustness to models and fitting parameters and
sensitivity

All our standard calculations were made on a set of 400 nodes quasi-regularly
distributed over the sphere (see Sec. S4) as a trade-off between too coarse, poorly
resolved but computationally cheap grids and finer but computationally expensive
grids. We checked that most of the spatial detail is captured with our nominal grid
resolution when compared to a higher resolution case (e.g., 1000 nodes).

We also examined the effect of changing the window size (i.e. radius θ0). Too
broad a window strongly smoothes the inferred spatial features. Analyses using
θ0 = 15◦ were found to give results very similar to those obtained with θ0 = 10◦

(i.e. approximately our node spacing, see Sec. S4). The window cannot be too
small in order to keep a sufficiently large degree range for the spherical harmonic
analysis.

The spatial resolution is also controlled by the spectral bandwidth L of the
multitaper window in a trade-off with the spectral resolution. In most cases in
this paper we favor spatial resolution over spectral resolution by taking a large
value for L, implying a signifiant number n of optimally concentrated tapers (see
Sec. S4: we take3 n = 30 for λ ≥ 0.99 with L = 58). This choice is mainly
motivated by the importance of detecting spatial variations in crustal properties
together with the theoretical expectation that the effective density curves will be
spectrally smooth (see, e.g., Fig. 3 & S3).

To check how our results were affected if spectral resolution is favored over
spatial resolution, we performed a windowing of the data with our nominal grid
resolution (400 nodes) and a value θ0 = 15◦, and for L = 20 (Shannon number
of ∼7.5) with n = 8 eigenvalue-weighted4 tapers. With such a set of parameters,
the spectral estimates at degrees ` >> L should exhibit variances that are about
as good (∼99 %) as if data were available everywhere on the sphere (see Fig. 10
of Dahlen and Simons [2008]). The resulting effective density spectra were then
fit to theoretical spectra corresponding to linear and exponential density profiles,
as described in Sec. S5. However, in this specific case, we applied a more rig-
orous calculation of χ2 in the best-fit approach to take into account the fact that

3In general, we found that our results (best-fit parameters) were almost unaffected for n & 15,
although the spectral estimates exhibit a higher variance as n decreases [e.g., Dahlen and Simons,
2008].

4In our nominal case, we instead use only the best-concentrated tapers, that are then equally
weighted. Both approaches should be equivalent [Dahlen and Simons, 2008].
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only estimates ρeff(`) at degrees ` separated by 2L are statistically independent.
Following Lewis and Simons [2012], who applied a similar local analysis for the
Martian crustal magnetic field, we compute χ2 given by Eq. (S23) with a sum
over the degree set S = {`min, `min + 2L + 1, `min + 2 × (2L + 1), ...}. As our
nominal fit degree range is between `min = 250 and `max = 550, L = 20 implies
N = 8 statistically independent spectral estimates. To correctly take into account
the local spectral leakage bias at a given ` (correlation with adjacent degrees `′

such that |`−`′| ≤ L), we computed the expected value of the multitaper estimate
at each degree ` ∈ S, using the coupling matrix M detailed in Dahlen and Simons
[2008] (see also Wieczorek and Simons [2005, 2007]):

〈ρeff(`)〉 =
`+L∑

`′=`−L

M``′ ρeff(`′). (S27)

The previous estimates and corresponding standard deviations over adjacent
degrees |`− `′| ≤ L for each of theN spectral bands are then used in the calcula-
tion of χ2 [Eq. (S23)]. To compute M , we use the analytical expression provided
by Dahlen and Simons [2008], in its approximate form which is valid for degrees
`, `′ � L [see their Eq. (146)]. Note that, for a given distance |` − `′|, the ex-
pression for M``′ depends only on L ; see Eqs. (146) & (6) of Dahlen and Simons
[2008]. Finally, the coupling (S27) should in principle be applied to Sgb and Sbb
separately [see Eq. (S18)], although this should only mildly affect the value of χ2.

Fig. S8 displays the outcome of the windowing and fitting procedures decribed
just above. It shows both the spatial distribution of the best-fitting density in-
crease depth scale and the mare detection (masked regions) from the linear model
(Fig. S8A), together with the corresponding minimum misfit (Fig. S8B). When
comparing with corresponding Figs. 2 and S6A, the smoothing effect of the poorer
spatial resolution implied by the chosen higher spectral resolution (L = 20) can
be appreciated. In particular, only the strongest mare regions are detected (i.e.
broadest and/or thickest). However, although the local values of the best-fit pa-
rameters may slightly differ (see also examples below), the main characteristics of
our nominal model are conserved; in particular, the SP-A signature (thinner low-
density layer) is still strong. Note that the misfit is here displayed as the reduced
chi-square χ2/ν: with the more rigorous definition of χ2 adopted here (see above),
and because the number of free (fitted) parameters is 2, the (maximal) number of
degrees of freedom is here exactly ν = N − 2 = 6.

In addition, the above reduced χ2 approach yields error estimates on param-
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eters that are in general of comparable magnitude (or smaller) to those derived
through the correlation-based Monte Carlo approach described in Sec. S5. For
instance, for the two cases depicted in Fig. 3 (see also Tab. S2), the ranges ρsurf ≤
2206 kg m−3 and d = 2.3+1.1

−0.2 km for the region within SP-A become ρsurf ≤
2030 kg m−3 and d = 3.5+0.3

−0.1 km (χ2
best/ν ≈ 1.68). For the other, non-SP-A

farside region, the ranges ρsurf = 2308+34
−40 kg m−3 and d = 28.4+19.8

−9.3 km become
ρsurf = 2325+28

−32 kg m−3 and d = 29.2+12.9
−7.7 km (χ2

best/ν ≈ 1.66). These new error
estimates were derived from the 1-σ confidence level associated with the regular
reduced χ2, i.e. from the condition χ2/ν ≤ χ2

best/ν +
√

2/ν.
Fig. S8B shows that our approach provides a reasonable fit to many regions

(χ2/ν around 1), although care should be taken regarding the exact value of an
“ideal” χ2/ν with such a low number of degrees of freedom. In regions where
larger misfit values are obtained, our theoretical model is probably too simple to
account for the detail of the observed signal. However, it should be remembered
that our goal is to investigate spatial variations and trends in the density stratifica-
tion of the lunar crust, rather than determining an exact model at some particular
region.

Figure S8: Effect of higher spectral resolution at the expense of a lower multitaper
spatial resolution. The data windowing parameters are here θ0 = 15◦ with L = 20
and n = 8 (see text for more detail). Results are shown through the distribution
of the best-fit density increase depth scale d (A) and the corresponding misfit map
(B). The misfit is here displayed as the best-fit reduced chi-square χ2/ν (see also
scale for χ2), ν being the (maximal) number of degrees of freedom (see text).
Masked areas correspond to the mare regions as detected from the linear model
(i.e. a < 5 kg m−3 km−1 criterion; see Figs. 1A & 2). Panel A should be compared
with Fig. 2 (same format).
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The significant difference between SP-A and the rest of the farside, depicted
in Figs. 2-3 & S7, is robust to different theoretical models. Mapping the critical
depth zcrit associated with the “saturated” linear model [Eq. (S9)] gives spatial
patterns that are very similar to those shown in Fig. 2; zcrit is the depth at which
the maximal (grain) density will be reached using the best-fit surface value (ρsurf)
and gradient (a). An equivalent result is obtained by mapping the best-fit top
layer thickness of a two-layer (each of constant density) model (fixing the bottom
layer’s density at the local grain density).

As can be seen from Fig. S9, the SP-A/non-SP-A farside difference is also
robust to the details of the fitting procedure, namely the chosen deep density ρ0

(Fig. S9B) or the fit’s degree range (Fig. S9C-D); though local values of the best-
fit parameters can vary (e.g., Tab. S2), the spatial patterns are conserved.

Figure S9: Effect of a constant deep density ρ0 and of the values of the upper
and lower bounds for the fit’s degree range on the spatial patterns of the best-fit
parameters – example with the exponential density model profile. (A) Best-fit
solutions for our canonical model (` = 250 − 550 and ρ0 = local grain density,
i.e. Fig. 2); (B) Same case with ρ0 fixed at 2917 kg m−3. The bottom row is for the
same ρ0 as in panel A, but with degree ranges ` = 150−550 (C) or ` = 250−450
(D). Format is similar to Fig. 2.
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Table S2: Example of best-fit parameters at the two locations of Fig. 3 for different
fit parameters of the exponential model. ρg is the surface grain density; its average
over the farside (over a region defined in Fig. S3A) is < ρg >= 2917 kg m−3.
The surface density is ρ0 −∆ρ. Our grid-search space is ∆ρ = 2− 1000 kg m−3

(steps of 2 kg m−3) and d = 0.1 − 50 km (steps of 0.1 km). The lines in bold
characters indicate our nominal case (i.e. Fig. 3).

Window `min `max ∆ρ ρ0 d χ2
best

χ2
best

`max−`min+1

(center coordinates) (kg m−3) (km)

SP-A
250 550 994 ρg 2.3 51.96 0.173
150 550 902 ρg 2.6 107.06 0.267

(191.25◦E, -62.32◦N ) 250 450 988 ρg 2.3 37.47 0.186
ρg = 2996 kg m−3 250 550 978 < ρg > 1.6 84.76 0.282

non-SP-A farside
250 550 596 ρg 28.4 22.03 0.073
150 550 584 ρg 34.0 30.25 0.075

(168.39◦E, 29.07◦N ) 250 450 590 ρg 30.4 17.34 0.086
ρg = 2904 kg m−3 250 550 610 < ρg > 28.9 22.06 0.073

Fig. S10 below displays the average density/porosity maps obtained with a
single-layer density model [i.e. ρ(z) is constant]. Results are shown for both our
high-degree range and the lower degree range employed in the study of Wieczorek
et al. [2013a] (bulk porosity). The azimuthally averaged radial structure in bulk
porosity and exponential density increase depth scale d within SP-A is diplayed
in Fig. S11 (see main text).
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Figure S10: Column-averaged crustal density (A, C) and corresponding porosity
(B, D) over degree range ` = `min − `max. Top row corresponds to our nominal,
high-degree range (shallow density/porosity); bottom row corresponds to a lower
degree range (bulk density/porosity), employed in the study of Wieczorek et al.
[2013a]: the bulk density/porosity distribution is consistent with that study (see
their Figs. 1-2 & S7), though our spatial resolution is lower. Porosity values are
generally smaller in D than in B. This is because the low degree range is more
sensitive to greater depths, and porosity decreases with depth (see also Han [2013]
and Han et al. [2014]). The “mare” regions [defined here as regions with shallow
density gradients a < 5 kg m−3 (see Figs. 1A & 2)] have been masked on the
porosity maps as the grain densities used (model of Huang and Wieczorek [2012],
available at http://www.ipgp.fr/%7Ewieczor) are probably not relevant
to the (bulk) crust, underneath the mare. Format as in Fig. 2.
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Figure S11: Averaged radial variation for various parameters within the South
Pole-Aitken (SP-A) basin region. Best-fit density increase depth scale (d) of the
exponential model (A), bulk porosity (B), and corresponding LOLA topographic
profile (C). Data were azimuthally averaged in radial bins (dots) of about half our
spatial resolution in extent (interpolated fields were used), except for the topog-
raphy (higher spatial resolution), and correspond to the fields displayed in Figs. 2
& S10D. Thick lines denote the mean and thin line the ±1 standard deviation lev-
els in each bin. SP-A’s center is taken as defined by Garrick-Bethell and Zuber
[2009], i.e. at −55◦ N, 191.1◦ E. 25



S7 Theoretical vs. observed seismic velocities
In Fig. 4, two kinds of porosity dependencies were used: an empirical law cali-
brated on lunar anorthositic Apollo samples [Sondergeld et al., 1979], and a purely
theoretical law: the so-called three-phase model [Smith, 1974; Christensen and
Lo, 1979], also referred to as the inclusion-matrix-composite model, or as the
Generalized Self-Consistent Method (GSCM). Note that we do not consider here
the effect of thermal expansion on the seismic velocity.

Empirical model
The empirical law of Sondergeld et al. [1979] we use can be written as

VP (φ) = VP0 (1− φ)−
1
2 exp

[
(φ2 − ξ)φ
2(1− φ)

]
, (S28)

where VP is the compressional velocity for a given porosity φ, VP0 = 7.15 km s−1

is the unfractured rock velocity, and ξ is an empirical parameter [Warren, 1969].
Two endmember values of the empirical parameter ξ were used in Fig. 4: ξ = 18 –
relevant to highly fractured lunar anorthosites, with long, elongated cracks – and
ξ = 1.97 – relevant to spherical pores [Warren, 1969; Sondergeld et al., 1979].
Eq. (S28) with ξ = 18 − 24 accounts for many published data on fractured lunar
anorthosites (see references in Sondergeld et al. [1979]).

Theoretical model
This section describes a three-phase model approach [Smith, 1974; Christensen
and Lo, 1979] that was used in Fig. 4, valid for spherical inclusions (i.e. here
vacuum-filled pores). Below we use the following, standard form [e.g., Mavko
et al., 2009] for the effective compressional velocity of a rock with a porosity φ:

VP (φ) =

√
K(φ) + 4µ(φ)/3

ρ(φ)
, (S29)

where K(φ) and µ(φ) are the effective bulk and shear modulus, respectively. The
relevant density is ρ(φ) = ρ0(1 − φ), with ρ0 the unfractured rock (i.e. grain)
density.
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In the three-phase model, the effective bulk modulus is equivalent [Chris-
tensen, 1979] to the effective bulk modulus in the composite sphere model of
Hashin [1962]. In the case with vacuum-filled pores, we have:

K(φ) = K0

(
1− φ

1 + (φ− 1) K0

K0+ 4
3
µ0

)
, (S30)

where the subscripts “0” denote matrix (grain) properties.
However, the effective shear modulus is implicitly given by the positive root

of the following quadratic equation:

AX2 +BX + C = 0, (S31)

whereX = µ(φ)/µ0−1, andA,B, andC are polynomial functions of the porosity
and the matrix’s Poisson ratio ν0 [Smith, 1974]. The latter and the other matrix
properties were chosen close to the typical values for anorthosite [Williams and
Jadwick, 1980], and such that the values of VP (φ = 0) given by Eqs. (S28) and
(S29) are identical. Tab. S3 gives the chosen coefficients.

Table S3: Various anorthosite-like elastic properties [Williams and Jadwick, 1980]
used to derive compressional seismic velocities from the three-phase model. Data
are such that the intact (non-porous) rock velocity is the same as VP0 in Eq. (S28).
For the vacuum-filled pores, the moduli K and µ, and Poisson’s ratio are consid-
ered equal to zero [e.g., Christensen, 1979].

Property Value

K0 96.33 GPa
µ0 35 GPa
ν0 0.338
ρ0 2800 kg m−3
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Most of the effective properties obtained with the three-phase model we em-
ploy coincide [Mogilevskaya, pers. comm.] with those provided by the GSCM
for cracks [e.g., Huang et al., 1994]; the latter gives results that are very similar to
those obtained with numerical simulations that accurately take pores’ interactions
into account5 [Mogilevskaya et al., 2007, see their Fig. 7].

Many different theoretical and/or empirical approaches could be used to pre-
dict seismic velocities as a function of porosity [e.g., Mavko et al., 2009]. We
note that, encouragingly, results that are very close to ours have recently been
presented by Schmerr and Han [2014] in an independent, complementary study
using Modified Biot-Gassman theory [Lee, 2008] (compare Fig. 1 of Schmerr and
Han [2014] with our Fig. 4).

Selected seismic velocity determinations
Here, we provide complementary information about the six selected lunar velocity
models used in Fig. 4.

The shallow model of Cooper et al. [1974] corresponds to a linear trend,
VP (z) = az + b, that excludes the biased Apollo 17 Lunar Module impact data
[Nakamura, 2011], and extrapolated down to a depth of 2.5 km. With z be-
ing the depth in kilometers, the (best-fit) coefficients are a = 0.778 s−1 and
b = 0.395 km s−1 (see their Fig. 19).

We also plot the pre-Apollo 17 era crustal model of Kovach and Watkins
[1973] (see their Fig. 11), and two reference, post-Apollo era models: the first
is the model of Toksöz et al. [1974], restricted to Oceanus Procellarum regions
beneath Apollo 12 and 14 sites (see their Fig. 19; see also Goins et al. [1981]);
the second is the model of Nakamura [1983] (see his Tab. 6), and includes the
complete Apollo seismic data set.

The two more recent models that are included in Fig. 4 use the complete
Apollo data set in a modern approach. The model of Khan and Mosegaard [2002]
uses the same data set as in the model of Nakamura [1983] in a Bayesian ap-
proach (here inversion of artificial impacts, crustal thickness of ∼38 km; see their
Fig. 15A). The model of Lognonné et al. [2003] relies on a complete reprocessing
of the Apollo data; we use their model C (see their Fig. 5).

5The three-phase model only approximately takes cracks’/pores’ (i.e. inclusions’) interactions
into account by embedding a single inclusion in a layer of matrix – to provide the required porosity
– that is, in turn, surrounded by the material with the effective (unknown) property (i.e. that is
subjected to the effective stress field).
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