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Coupling tidal effects and heat transfer in planetary bodies
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Abstract

Tidal dissipation plays a key role in the energy budget
and in the thermal-orbital evolution of various bodies
in our Solar system, including Io (e.g., [8]) and
Enceladus (e.g., [11, 16]), but also in other planetary
systems (e.g., [3, 1]). Some studies already modeled
the thermal-orbital evolutions of Galilean moons
[5], the early Moon [9] or super-Earths [13]. These
pioneering studies all used parameterized, or semi-
parameterized models for describing heat transfer.
However, mantle convection is a strongly nonlinear
process, particularly when feedbacks occur due to
heterogeneous internal heating like tidal dissipation
[1]. Besides, compressibility cannot be neglected for
Earth-like planets, and all the more for super-Earths.
Therefore, it is important to take into account all these
effects to investigate the evolution of a planet-satellite
system.

We have developed a numerical tool, CHEOPS-2D
(Coupling Heat transfer and Evolution of the Orbit
of Planets and of their Satellites in 2-Dimensional
geometry), to self-consistently compute heat transfer,
tidal dissipation and the resulting orbital evolution.
Thermal regimes are computed by solving the coupled
equations for the conservation of mass, momentum
and energy in the infinite Prandtl number approxima-
tion, as it is usually done for planetary solid rocky or
icy mantles. These equations are treated in the anelas-
tic formalism [6] in order to take into account mantle
compressiblity. The full system is solved through
the spherical annulus bidimensional approach [4]. A
SIMPLER-based [10] multigrid solver associated to
a staggered mesh is used for Stokes’ equation with a
strongly temperature-dependent viscosity. The energy
equation is treated by a second-order scheme for the
conduction term and with a high resolution method
(Superbee [12]) for advection, therefore minimizing
numerical diffusion. Advance in time is performed by
using a standard explicit method.

Tidal dissipation is computed for a viscoelastic
body in the frequency domain. The correspondence
principle [2] allows us to use complex rheologies
to compute the forced spheroidal oscillations and
dissipated energy. The numerical methodology is
inspired by the radial functions formalism (following
[14]) already used in [15, 11] for the computation of
tidal dissipation in spherically-layered bodies. The
resulting field is the average over longitudes, in order
to include the 3D global response in the annulus
geometry. Finally, the response is convolved with
a temperature- and frequency-dependent dissipation
factor. This results in a spatially heterogeneous
dissipation field, which is included in the thermal
equation as an internal heating term. A simple orbital
evolution model, based on Kaula’s formalism [7], is
currently being implemented in the code.

After presenting the code CHEOPS-2D, we will
show some of the effects induced by the compressib-
lity of mantle materials, both for the viscous (i.e. heat
transfer) and viscoelastic (i.e. tidal dissipation) rhe-
ologies on a generic planet or satellite. We will then
discuss some simple but more realistic examples, fo-
cusing on 1:1 spin-orbit resonance cases.
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