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Introduction: During the final weeks (the “end-

game”) of the Gravity Recovery and Interior Laborato-
ry (GRAIL) mission [1], the orbital altitude of the dual 
spacecraft was lowered to an average of 11 km above 
the surface of the Moon.  The endgame mapping strat-
egy [2] was designed to provide the highest-resolution 
coverage over the Orientale basin in order to provide a 
gravity map of a multi-ring impact basin at unprece-
dented resolution.  (High-resolution data over other 
areas of the planet were acquired as well.  ) Here we 
summarize methodology and present results of local 
analysis to produce a gravitational model with 3-5-km 
spatial resolution, appropriate for investigating the 
structure and evolution of Orientale and its surround-
ings.  

GRAIL Modeling Status: GRAIL [1], a twin-
spacecraft lunar gravity mission, was launched on Sep-
tember 10, 2012, and mapped the Moon at decreasing 
altitudes in sequential orbital phases, until its planned 
de-orbit on December 17, 2012. Initial analysis of data 
acquired during the Primary Mission (PM) [3] at a 
mean orbital altitude of 55 km led to a global spherical 
harmonic model (GL0420A) of the gravitational field 
to degree and order 420 (spatial block size = 13 km) 
[4] that represented an improvement in spatial resolu-
tion by a factor of 3-4 and in quality by three to more 
than five orders of magnitude over previous models 
from all earlier missions.  Subsequent PM spherical 
harmonic models achieved degree and order 660 (spa-
tial block size = 8.2 km) [5, 6].  During GRAIL’s Ex-
tended Mission (XM), the mapping altitude was low-
ered by a factor of two to 23 km; the highest resolution 
global gravity field so far achieved is to degree and 

order 1080 (spatial block size = 5 km) [7], but in prac-
tice that resolution is achieved only at the lowest map-
ping altitudes. On December 6, 2012, the average alti-
tude of the two GRAIL orbiters was lowered by anoth-
er factor of two, to 11 km.  This maneuver enabled a 
very high-resolution mapping campaign over the Ori-
entale basin (among other regions) during which time 
the twin spacecraft orbited to within 2 km of the sur-
face of the basin’s rings.  

Local Solution for Orientale: In order to achieve 
the highest-resolution gravitational model of Orientale, 
we performed [8] a short-arc analysis [9] of GRAIL’s 
Ka-band range rate (KBRR) observations by adjusting 
a priori field GRGM900A while embedding neighbor 
smoothing [10, 11].  KBRR residuals with respect to 
GRGM900A before and after the local modeling are 
shown in Fig. 1 and illustrate the improvement in the 
local model.  Free-air anomalies (Fig. 2) were con-
structed from mixed 1/6o and 1/10o grids. Our local 
analysis removes high-frequency striping as well as 
extends the resolution of anomalies in Orientale and its 
environs to 3-5 km, suitable for detailed investigations 
of basin origin and evolution. 

Comparison with Previous Models: In previous 
analyses of the structure and compensation of Orien-
tale [e.g., 12-15], the resolution of gravity was a limit-
ing factor. In addition, it is now known that pre-
GRAIL models under-sampled the Moon’s gravita-
tional power even at wavelengths that were then 
thought to be well resolved [cf. 4]. Combination of 
GRAIL gravity with a 1/256o geodetically referenced 
topography [16] from the Lunar Orbiter Laser Altime-
ter (LOLA) [17] is permitting study of interior struc-
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ture at the level of basin substructures. Analyses in 
progress include the mare, crustal and underlying up-
per mantle structure [e.g., 18-20], as well as the nature 
of rings as relevant to basin formation [cf. 21] and as-
sessing predicted distributions of impact melt [22] .  
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Figure 1. KBRR post-fit residuals along orbit 

tracks to (top) GRAIL gravity field GRGM900A and 
(bottom) local solution 1800 [8].   

 

 
Figure 2. Free-air gravity of Orientale basin and 

surroundings from (top) GRAIL field GRGM900A and 
(bottom) local solution 1800 [8]. 

 

2061.pdf45th Lunar and Planetary Science Conference (2014)


